Notch and MAML-1 Complexation Do Not Detectably Alter the DNA Binding Specificity of the Transcription Factor CSL

نویسندگان

  • Cristina Del Bianco
  • Anastasia Vedenko
  • Sung Hee Choi
  • Michael F. Berger
  • Leila Shokri
  • Martha L. Bulyk
  • Stephen C. Blacklow
چکیده

BACKGROUND Canonical Notch signaling is initiated when ligand binding induces proteolytic release of the intracellular part of Notch (ICN) from the cell membrane. ICN then travels into the nucleus where it drives the assembly of a transcriptional activation complex containing the DNA-binding transcription factor CSL, ICN, and a specialized co-activator of the Mastermind family. A consensus DNA binding site motif for the CSL protein was previously defined using selection-based methods, but whether subsequent association of Notch and Mastermind-like proteins affects the DNA binding preferences of CSL has not previously been examined. PRINCIPAL FINDINGS Here, we utilized protein-binding microarrays (PBMs) to compare the binding site preferences of isolated CSL with the preferred binding sites of CSL when bound to the CSL-binding domains of all four different human Notch receptors. Measurements were taken both in the absence and in the presence of Mastermind-like-1 (MAML1). Our data show no detectable difference in the DNA binding site preferences of CSL before and after loading of Notch and MAML1 proteins. CONCLUSIONS/SIGNIFICANCE These findings support the conclusion that accrual of Notch and MAML1 promote transcriptional activation without dramatically altering the preferred sites of DNA binding, and illustrate the potential of PBMs to analyze the binding site preferences of multiprotein-DNA complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis for Cooperativity in Recruitment of MAML Coactivators to Notch Transcription Complexes

Notch receptors transduce essential developmental signals between neighboring cells by forming a complex that leads to transcription of target genes upon activation. We report here the crystal structure of a Notch transcriptional activation complex containing the ankyrin domain of human Notch1 (ANK), the transcription factor CSL on cognate DNA, and a polypeptide from the coactivator Mastermind-...

متن کامل

Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex.

Ligand binding by Notch receptors triggers a series of proteolytic cleavages that liberate the intracellular portion of Notch (ICN) from the cell membrane, permitting it to translocate to the nucleus. Nuclear ICN binds to a highly conserved DNA-binding transcription factor called CSL (also known as RBP-Jkappa, CBF1, Suppressor of Hairless, and Lag-1) and recruits Mastermind-like transcriptional...

متن کامل

A combination of computational and experimental approaches identifies DNA sequence constraints associated with target site binding specificity of the transcription factor CSL

Regulation of transcription is fundamental to development and physiology, and occurs through binding of transcription factors to specific DNA sequences in the genome. CSL (CBF1/Suppressor of Hairless/LAG-1), a core component of the Notch signaling pathway, is one such transcription factor that acts in concert with co-activators or co-repressors to control the activity of associated target genes...

متن کامل

The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development.

Signaling mediated by various Notch receptors and their ligands regulates diverse biological processes, including lymphoid cell fate decisions. Notch1 is required during T-cell development, while Notch2 and the Notch ligand Delta-like1 control marginal zone B (MZB) cell development. We previously determined that Mastermind-like (MAML) transcriptional coactivators are required for Notchinduced t...

متن کامل

Comparative analysis of Notch1 and Notch2 binding sites in the genome of BxPC3 pancreatic cancer cells

Notch signaling plays a key role in the development of pancreatic cancer. Among the four identified Notch receptors, Notch1 and Notch2 share the highest homology. Notch1 has been reported to be an oncogene but some reports indicate that Notch2, not Notch1, plays a key role in pancreatic carcinogenesis. As both are transcription factors, examination of their genomic binding sites might reveal in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010